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Abstract The interactions between temperature and moisture’s impacts on structural instability are relatively
significant in environments with high heat and humidity levels. This study uses a fractional order framework
to build a coupled hygrothermoelastic model with non-Fick and non-Fourier effects by taking into account
two temperatures, conductive and thermodynamic heat flow. The hygrothermoelastic damping behavior of the
cylindrical nanobeams is modeled using the Euler–Bernoulli beam theory, and an explicit solution is obtained
using Laplace transform and mode analysis. The inverse Laplace transforms are computed numerically using
a method based on Fourier expansion techniques. The numerical results for various aspect ratios and end
supports are examined. The effects of the temperature discrepancy factor due to heat flow on the damping and
frequency shift within the hygrothermoelastic nano-cylindrical beam are illustrated graphically. The numerical
findings show that moisture availability increases the damping of the nanoscale beam, resulting in increased
energy dissipation.

1 Introduction

Classical continuum theory is size-independent and cannot provide a good prediction for small scales. Thus, the
size-dependent continuum theories, such as the strain gradient theory, couple stress theory, micropolar theory,
nonlocal elasticity theory, were developed to characterize the size-dependent effect in the nanostructures by
introducing an intrinsic length scale. MEMS/NEMS devices have high sensitivity as well as fast response. It
is necessary to know how the parameters affect their physical properties and mechanical properties. Unfortu-
nately, it has been consistently observed that energy dissipation increases with size decreasing significantly.
It has been verified that thermoelastic damping is a significant loss mechanism near room temperature in
MEMS/NEMS devices. The complex relationship between heat, moisture, and deformation poses various
engineering challenges with significant real-world implications. The transient nature of the boundary circum-
stances will determine the degree to which these consequences are linked. They may, therefore, be used to
predict considerable coupling effects as boundary conditions change in circumstances where coupling effects
are relatively insignificant by obtaining them from current experimental data. This can be done in cases where
the coupling effects are relatively small. It makes it feasible to investigate with a greater degree of precision
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understanding how a substance reacts to severe climatic circumstances. It is common for there to be a shortage
of such expertise, which presents a significant barrier to the creation of new technology advancements [1].

To investigate the constitutive relationships between temperature, moisture content, and deformation in
porous materials [2], a straightforward linear hygrothermoelastic model has been derived and then transformed
into a single fourth-order ordinary differential equation by the application of the Laplace transformation. To
evaluate hygrothermoelastic stress in composite laminating plates throughout moisture desorption, Benkhedda
et al. [3] evaluated an approximation model while taking into account a change in mechanical characteristics
brought on by temperature and moisture variations. Based on a higher-order shear deformation theory, Nguyen
et al. [4] studied the hygrothermal impacts on vibration and buckling analysis of functionally graded beams.
This theory explains the higher-order variation of in-plane and out-of-plane displacements as well as the
hyperbolic distribution of transverse shear stress. The Ritz solution method is used to solve problems with
different boundary conditions. Zenkour [5] examined into the hygrothermomechanically induced bending
of a thin, variable-thickness rectangular plate with two of the plate’s opposite edges clamped and the other
two simply supported. By utilizing von Kármán geometric nonlinearity and the Euler–Bernoulli theory, Tang
and Ding [6] presented a study of the nonlinear hygrothermal dynamics of a bidirectionally functionally
graded beam with linked transverse and longitudinal displacements. In their paper [7], for a non-simple
material that is rigid in both classical Fourier’s and Fick’s laws, the author developed a new model of two-
temperature hygrothermoelastic diffusion theory that results in amultilayered elliptic plate that is perpendicular
to the axis when subjected to hygrothermal load. Jan et al. [8] conducted an experimental method for analyzing
the performance of an externally actuated Complementary Metal–Oxide–Semiconductor (CMOS)—MEMS
paddle resonator under the effect of varying temperature and humidity environment using Field Emission
Scanning Electron Microscopy (FESEM). Eichler et al. [9] examined the damping of mechanical resonators
and tested them in a variety of objects, including the Foucault pendulum, carbon nanotubes, and graphene
sheets. Ebrahimi and Barati [10] investigated the effects of temperature rise, moisture concentration rise,
length scale parameter, elastic foundation, nonlocal parameter, and geometrical parameters on a nonlocal
strain gradient plate model on elastic substrate derived via Hamilton’s principle for buckling study of graphene
sheets in hygrothermal environments. Most of these studies are founded on Fourier and Fick’s laws, a well-
known and commonly applied classical principle in the hygrothermoelastic theory. On the other hand, Fourier
and Fick’s classical form has a significant law in assuming an infinitely fast propagation. The Fourier and Fick
model has been improved by introducing a given characteristic time constant, known as phase lag of the heat
flux or so-called relaxation time, to remove the paradox of infinite speed propagation. With the Introduction of
single-phase lag to evade the discrepancy between the mathematical model and the experimental observations,
this extension turns the parabolic into a hyperbolic equation.

Based on the above assumption, different models were suggested by various authors. Some generalized
diffusion or heat conduction models have been presented to address this, including the hyperbolic heat con-
duction model [11], the dual-phase-lag diffusion model [12], and the fractional diffusion models [13]. Sun
et al. [14] investigated the generalized thermoelastic theory with one relaxation period by utilizing the finite
sine Fourier transformation approach with the Laplace transformation and the normal mode analysis for the
damping of micro-scale beam resonators that were impacted by pulsed lasers. Kakhki et al. [15] presented
an analytical method for studying Thermo-Elastic Damping (TED) and the dynamic behavior of microbeam
resonators as MEMS and solved it analytically by employing the Laplace transform techniques for spatial vari-
ables. Youssef et al. [16] studied the thermal analysis of the thermal quality factor set for a silicon microbeam
resonator subjected to static prestress. The solutions based on the Lord–Shulman and dual-phase-lag heat
conduction models with fractional derivatives are obtained in six different heat conduction models.

The entire body of work that has been done up until this point has investigated chiefly the thermoelastic
effects in MEMS with dimensions typically ranging from tens to hundreds of micrometers. Despite this, there
are considerable benefits that may be gained from MEMS by decreasing their size and switching to different
materials. Devices with dimensions on the nanoscale are often referred to as NEMS, and they tend to operate at
higher frequencies while consuming less power thanMEMS devices. NEMS has the potential to integrate more
smoothly and provide unique functionalities [17]. Elsibai and Youssef [18] investigated how the relationship
between temperature and strain rate became dominant within the nanoscale beam and came up with a general
solution for the vibration of a gold nanobeam resonator brought on by ramp heating in the context of the
Green and Naghdi model of generalized thermoelasticity. Zhou and Li [19] investigated the Heat-Conduction
Dimension (HCD) utilizing micro/nano-ring resonators with a rectangular cross section and the Dual-Phase-
Lagging (DPL) non-Fourier theory. By combining the Euler–Bernoulli beam theory with Lord and Shulman’s
theory of generalized thermoelasticity and memory-dependent heat conduction, Wang et al. [20] explored the
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thermoelastic damping in a microbeam with a rectangular cross-section. Using the theory of ’non-Fickian’
mass diffusion, Shaw and Othman [21] examined the thermodynamic damping on mass diffusion in the solid
body deformation induced by heat coming from a cavity into the medium caused by heat coming from a cavity
into the medium.

There have not been a lot of studies completed in this field based on generalized diffusion theories, which
is noteworthy when it comes to hygrothermoelastic challenges. The generalized magneto-thermoelasticity
equations were developed by Ezzat et al. [22] in two dimensions with two relaxation times, and they were
solved using the matrix exponential method, which is the cornerstone of the state space approach used in
modern theory. El-Karamany and Ezzat [23] obtained a novel generalized thermoelasticity theory with two-
time delays and kernel functions. With this theory, the constitutive equations for the thermoelastic diffusion
in anisotropic and isotropic solids are constructed, which results in the linked thermoelastic diffusion and
Lord–Shulman theories as special instances. Hosseini et al. [24] performed an investigation with the use
of local integral equations for coupled two-dimensional (2D) non-Fick hygrothermoelasticity analysis made
on the Meshless Petrov–Galerkin (MLPG) technique. Peng et al. [25] developed a non-Fourier hyperbolic
temperature-moisture coupling model for convective surfaces. This model takes into account the Dufour effect
as well as the Soret effect and is based on the phase delay of heat and moisture fluxes. Convective surfaces
were used in the construction of this model. Xue et al. [26] proposed a hyperbolic hygrothermal coupled model
to explore the fracture problem of a hollow cylinder with a circumferential crack by extending the traditional
laws of heat conduction and diffusion formulated by Fourier and Fick’s law, respectively. A time-fractional
coupled hygrothermal theory was developed by Zhang and Li [27–29] to explain the inconsistent phenomenon
of coupled hygrothermal diffusion and to obtain the solution using the integral transform approach. Later, they
introduced relaxation times or phase lags of heat flux and moisture flux via mode analysis to get a coupled
hygrothermoelastic model.

The earlier research studies indicated that the non-Fourier of hygrothermal diffusion coupling is both
evident and essential; these effects cannot be ignored. This is incredibly accurate when referring to coupled
hygrothermoelastic medium. This paper investigates the hygrothermal coupling effects of a nanoscale cylin-
drical beam’s damping and frequency shifts. A novel non-simple hygrothermoelastic model that considers
temperature discrepancy factors has been developed to represent the coupling behaviors of heat, moisture, and
elastic deformations. One may, therefore, obtain the explicit formulas for hygrothermoelastic damping using
this information. The consequences of coupled hygrothermoelastic and generalized diffusion parameters on
the inverse quality factor are discussed with the help of the following illustration and the graphical depiction
that follows it.

2 The formulation for the hygrothermal equation for non-simple medium

We first propose a theory of time-fractional hygrothermoelasticity for a non-simple medium in this paper. In
order to maintain simplicity, it is considered that heat and moisture are coupled and that both have an impact
on the elastic stresses in the medium. As a consequence, the interaction between heat and moisture can be
characterized as water vapor diffusion through a material’s pores, which are partially filled with solids and air.
In general, according to [30], the amount of moisture absorbed by a unit mass of a solidM, can be assumed to
depend linearly on the concentration of water vapor contained in a unit volume of void C, and the temperature
T, and change in moisture and temperature is confined within a small range; the amount of moisture absorbed
by a unit mass of a solid is given by,

M � χC − ωT + constant (1)

where χ and ω are material constants. Then, the amount of moisture contained in the composite per unit mass
of solid m can be written as,

m � ν′C/ρ + M (2)

where ν′ is the volume fraction of the voids, and ρ is the density of the material, defined as ρ � (
1 − ν′)ρs,

with ρs being the density of the solid without voids.
Due to the principles of energy conservation and mass conservation, taking into account the volume strain

−z (∂2w/∂r2), we can write

∇ · qh � ργ
∂M

∂t
− ρcp

∂T

∂t
+ Eα1α2T0

∂

∂t

(
z
∂2w

∂r2

)
, (3)
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∇ · qm � − ρ

ν′
∂M

∂t
− ∂C

∂t
, (4)

where α1, α2 are the coefficients of linear thermal expansion andmoisture absorption, qh is the heat flux vector
and qm is the moisture flux vector, γ is the amount of heat released per unit mass of moisture, cp is the specific
heat at constant pressure, and w is often called the transverse deflection of the cylindrical beam, respectively.

Following [31], heat and moisture are assumed to obey time-fractional Fourier and Fick’s laws where the
matter flux has the power time-nonlocal kernel describing "long-tail" memory. Thus, the heat flux vector qh
and moisture flux vector qm take the following forms:

qh(t) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− Dh
	(α)

∂
∂t

t∫

0
(t − τ )α−1∇T (τ )dτ , 0 < α ≤ 1,

− Dh
	(α−1)

t∫

0
(t − τ )α−2∇T (τ )dτ , 1 < α ≤ 2,

(5)

qm(t) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− Dm
	(β)

∂
∂t

t∫

0
(t − τ )β−1∇C(τ )dτ 0 < β ≤ 1,

− Dm
	(β−1)

t∫

0
(t − τ )β−2∇C(τ )dτ 1 < β ≤ 2,

(6)

in which α, β are the fractional orders, and 	(∗) is the Gamma function.
Putting Eqs. (5) and (6) into Eqs. (3) and (4), we get

Dh∇2T � −ργ
∂αM

∂tα
+ ρcp

∂aT

∂tα
− Eα1α2T0

∂α

∂tα

(
z
∂2w

∂r2

)
, 0 < α ≤ 2, (7)

Dm∇2C � ρ

ν′
∂βM

∂tβ
+

∂βC

∂tβ
, 0 < β ≤ 2, (8)

in which (∂α/∂tα) and
(
∂β/∂tβ

)
are the Caputo fractional derivatives [32] as

dα f (t)

dtα
�

⎧
⎪⎨

⎪⎩

1
	(n−α)

t∫

0
(t − τ )n−α−1 dn

f (τ )
dτ n

dτ , n − 1 < α < n

dn f (τ )
dtn , α � n

(9)

The quantity M in Eqs. (7) and (8) can be eliminated using Eq. (1); we get the system of linearly coupled
partial differential equation of moisture (C) and temperature (T ) as follows,

D∇2T � ∂α

∂tα

[
T − ηC − Eα1α2T0

ρ(γω + cp)
z
∂2w

∂r2

]
, 0 < α ≤ 2, (10)

D∇2C � ∂β

∂tβ
(C − λT ), 0 < β ≤ 2 (11)

where ∇2 is the Laplacian operator involving two variable parameters, η is the adiabatic coefficient, λ is an
isothermal coefficient,D and D are thermal diffusion coefficient under the state of constant vapor concentration
and vapor diffusion coefficient under isothermal condition, respectively, and it is represented as

D � Dh

ρ(cp + γω)
, η � γχ

cp + γω
, (12)

D � Dmν′

ν′ + ρχ
, λ � ρω

ν′ + ρχ
, (13)

The two-temperature model is a non-classical thermoelasticity theory of elastic solids currently being
introduced. In this context [33, 34], it recommended separating real materials into simple and non-simple
materials by taking into account two temperatures (conductive and thermodynamic), and they have shown that
the two temperatures are related by,

φ � T − b∇2T , b > 0 (14)
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Fig. 1 Cross-sectional configuration of a cylindrical beam

in which φ is the thermodynamic temperature, T is the conductive temperature, and b is the temperature
discrepancy factor. Because of this, the thermodynamics and conductivity temperatures are the same for
simple materials but not for non-simple materials.

The parameter b is a crucial distinction between the two-temperature thermoelasticity and classical theories.
Specifically, in the limit which gives rise to the classical theory, i.e., one temperature generalized thermoelas-
ticity theory. Therefore, for a non-simple medium, Eq. (10) can be written as,

D

(
1 +

b

κ

∂

∂t

)
∇2T � ∂α

∂tα

[
T − ηC − Eα1α2T0z

ρ(cp + γω)

∂2w

∂r2

]
, 0 < α ≤ 2. (15)

Therefore, the system of linearly coupled partial differential equations is represented by Eqs. (11) and (15).

3 Formulation of the problem

To investigate the vibration of an Euler–Bernoulli cylindrical beam with circular cross sections subjected to
hygrothermal loadings at the surface, as illustrated in Fig. 1, the cylindrical coordinates system (r , ψ , z) is
utilized.

Take a look at the small flexural deflections of a cylindrical beamwith z-axes specified along the longitudinal
with length z (−h/2 ≤ z ≤ h/2),width radius r (0 ≤ r ≤ a) , andψ (0 ≤ ψ ≤ 2π).When the cylindrical beam
is unstretched, unstrained, and has no damping mechanism when the cylinder is at rest, and the temperature is
T0, moisture is C0 everywhere. Due to the symmetry of this problem, the coupled partial differential equation
for a non-simplematerial is represented by the systemof differential Equationswhere temperature andmoisture
are finite in the cylindrical beam for any time. Hence, we can write

D

(
1 +

b

κ

∂

∂t

)
∇2T � ∂α

∂tα

(
T − ηC − zα2�E

α1

∂2w

∂r2

)
, 0 < α ≤ 2 (16)

D∇2C � ∂β

∂tβ
(C − λT ), 0 < β ≤ 2 (17)

subjected to the initial conditions

T (r , 0) � T0 and C(r , 0) � C0, for 0 < r < a, (18)
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∂αT (r , 0)

∂tα
� 0 , for 0 < r < a, if 1 <α ≤ 2,

∂βC(r , 0)

∂tβ
� 0 , for 0 < r < a, if 1 <β ≤ 2,

(19)

where

�E � Eα2
1T0

ρ(cp + γω)
. (20)

If γω vanishes, �E represents the relaxation strength of the Youngs modulus called as Zener modulus
[35], and if α2 � 0, the above system reduces to an uncoupled diffusion equation of hygrothermoelastic
temperature,moisture, and displacement distribution. The above system reduces to a coupled diffusion equation
of hygrothermoelastic temperature, moisture, and displacement distribution for α2 � 1.Wewill further discuss
the fractional order hygrothermoelastic vibration of a cylindrical beam for both uncoupled and coupled cases.

The cylinder’s upper and lower surfaces are assumed to have no heat or moisture flow, equivalent to a
vanishing temperature and moisture gradient on both surfaces for this research.

∂T

∂z
� ∂C

∂z
� 0 , z � ±h

2
, t > 0 (21)

Under the Euler–Bernoulli hypothesis, the displacement component is expressed as

ur � −z
∂w(r , t)

∂r
, uψ � 0, uz(r , t) � w(r , t) (22)

For the present investigation, the Euler–Bernoulli beam theory is applied to simulate the thermally induced
lateral vibration [36]. The differential equation of the beam’s thermally generated lateral vibration may be
written as follows:

∇4
1w + ∇2

1MT +
ρA

E I

∂2w

∂t2
� 0 (23)

with conditions

w(r , 0) � 0,
∂w(r , 0)

∂t
� 0, 0 < r < a (24)

where ∇1 is the Laplace operator involving one variable parameter, ρ is the density of the beam A � πa2 is
the cross section area, E is Young’s modulus, I � πa4/2 is the moment of inertia about the z-axis, and MT (r ,
t) is the hygrothermal moment given by

MT � 12

h3

h/2∫

−h/2

[β1(T − T0) + β2(C − C0]z dz (25)

where β1 is the thermal expansion coefficient and β2 the moisture absorption coefficient, respectively.

4 Solution of the problem

To solve Eqs. (16) and (17) under appropriate boundary conditions, we introduce the following dimensionless
quantities:

ŵ � w/a, ẑ � z/a, r̂ � r/a, ĥ � h/a, (t̂ , b̂) � (c/a) (t , b),

c � √
E/ρ, θ � (T − T0)/T0, � � (C − C0)/λT0,

(26)
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4.1 The coupled case

Then, Eq. (16) and (17) reduces to

D1

(
1 +

b

κ

∂

∂t

)
∇2θ � ∂α

∂tα

(
θ − ηλψ − z a α2�E

α1T0

∂2w

∂r2

)
(27)

D2∇2ψ � ∂β

∂tβ
(ψ − θ) (28)

where

D1 � Daα−2

cα
, D2 � Daβ−2

cβ
, ∇2 � ∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2
. (29)

and we have canceled the prime for convenience.
Laplace transform of a real-valued function f (t), t ≥ 0 defined as

f (s) � L[ f (t)] �
∞∫

0

f (t)e−stdt , s > 0 (30)

where we shall assume that f (t) is piecewise continuous and s is the Laplace parameter.
Apply Laplace transform to Eqs. (27) and (28), we get

D1

(
1 +

b

κ
s

)
∇2 θ � sα

(
θ − ηλ� − zaα2�E

α1T0

∂2w

∂r2

)
(31)

D2∇2� � sβ (� − θ ) (32)

For the coupled case, to solve the coupled governing Eqs. (31) and (32), the dimensionless temperature
and moisture are expressible in terms of an auxiliary function F as follows:

θ � (
D2∇2 − sβ

)
F (33)

� � − sβF (34)

It is straightforward to establish that Eqs. (31) and (32) are automatically fulfilled if the previously unknown
function F satisfies the equation presented in the following sentence.

D1D2

(
1 +

b

κ
s

)
∇4F −

(
D1s

β + D2s
α +

bD1s1+β

κ

)
∇2F

+(1 − ηλ)sα+βF +
z a α2�E

α1T0
sα ∂2w

∂r2
� 0

(35)

Using the following parameters, we set up a model to determine the effect of hygrothermoelastic damping,
on the time-harmonic vibrations in the Laplace domain as

(w, θ ,�, F) � (w∗, θ∗
,�

∗
, F

∗
) ei � s (36)

where � is the dimensionless frequency of the beam, and we expect to find that, in most cases, the frequencies
are complex, with the imaginary component |Im(�)| representing the vibration’s attenuation and the real part
Re(�) providing the beam’s new eigenfrequencies in the presence of thermoelastic coupling.

Substituting Eqs. (36) in (35), one obtains

D1D2

(
1 +

b

κ
s

)
∇4F

∗ −
(
D1s

β + D2s
α +

bD1s1+β

κ

)
∇2F

∗

+(1 − ηλ)sα+βF
∗
+
z a α2�E

α1T0
sα ∂2w∗

∂r2
� 0

(37)
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Note that there are no thermal gradients in the direction and that thermal gradients in the plane of the cross
section along the direction are significantly larger than gradients along the beam axis. We neglect the terms
∂2/∂r2 and ∂/∂r , replace ∇2 by ∂2/∂z2 [35]. Then, the general solution of Eq. (37) is given by

F
∗ � A1 sin(k1z) + A2 cos(k1z) + A3 sin(k2z) + A4 cos(k2z)

− z a α2�E

(1 − ηλ)α1T0sβ

∂2w∗

∂r2
(38)

where

k1 �
√

p1 −
√
p21 − 4P2, k2 �

√

p1 +
√
p21 − 4P2,

p1 � [D1s
βκ + D2s

ακ + D1bs
1+β ]/[2D1D2(bs + κ)],

P2 � [(1 − ηλ)sα+βκ]/[2D1D2(bs + κ)],

(39)

and A1, A2, A3, A4 are unknown arbitrary constants that are to be determined by boundary conditions given
in Eq. (21). Using Eqs. (33), (34), and (38), we can write a temperature and moisture expression in Laplace
domain as

θ
∗ � (D2k

2
1 − sβ )[A1 sin(k1z) + A2 cos(k1z)] + (D2k

2
2 − sβ )

× [A3 sin(k2z) + A4 cos(k2z)] +
z aα2�E

(1 − ηλ)α1T0sβ

∂2w∗

∂r2
(40)

�
∗ � −sβ [A1 sin(k1z) + A2 cos(k1z)] − sβ [A3 sin(k2z)

+A4 cos(k2z)] +
z aα2�E

(1 − ηλ)α1T0sβ

∂2w∗

∂r2
(41)

Here,

A1 � −aα2�Ek22 sec[hk1/2]

α1T0s2βk1(k21 − k22)(1 − ηλ)

∂2w∗

∂r2
, A2 � 0, (42)

A3 � a α2�Ek21 sec[hk2/2]

α1T0s2βk2(k21 − k22)(1 − ηλ)

∂2w∗

∂r2
, A4 � 0 (43)

Substitute these values of A1, A2, A3, and A4 in Eqs. (38), (40), and (41), one obtains

F
∗ � −aα2�E [sβ z + f1 sin(k1z) + f2 sin(k2z)]

(1 − ηλ)α1T0s2β
∂2w∗

∂r2
(44)

θ
∗ � a α2 �E [zsβ − (D2k21 − sβ ) f1 sin(k1z) − (D2k22 − sβ ) f2 sin(k2z)]

(1 − ηλ)α1T0s2β
∂2w∗

∂r2
(45)

�
∗ � a α2�E [z − f1 sin(k1z) − f2 sin(k2z)]

(1 − ηλ)α1T0sβ

∂2w∗

∂r2
(46)

where

f1 � k22 sec(ahk1/2)

k1(k21 − k22)
, f2 � k21 sec(ahk2/2)

k2(k22 − k21)
. (47)

Next, to find the hygrothermal moment and deflection, take the Laplace transform of Eqs. (23) and (25),
one obtains

∇4
1w + ∇2

1MT +
ρA

E I
s2w � 0 (48)
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MT � 12T0
ah3

h/2∫

−h/2

(β1θ + β2λ�) z dz (49)

Using Eq. (36) above Eqs. (48) and (49) can be written as

∇4
1w

∗ + 1

a2
∇2
1M

∗
T +

ρAc2

E I
s2w∗ � 0 (50)

M
∗
T � 12T0

ah3(s − i�)

h/2∫

− h/2

(β1θ
∗
+ β2λ�

∗
) z dz (51)

Substituting Eqs. (45) and (46) in Eq. (51), we get

M
∗
T � α2 �Es−2β (β1 + β2)

α1(1 − ηλ)(s − i�)
[1 + g(�1)]

∂2w∗

∂r2
(52)

where

g(�1) �
2∑

i�1

24gi
ki3

[
ki h

2
− tan

(
ki h

2

)]
(53)

g1 � k22
(k21 − k22)

[
β1(D2k21 − sβ ) + β2λsβ

h3(β1 + β2λ)sβ

]

(54)

g2 � k21
(k22 − k21)

[
β1(D2k22 − sβ ) + β2λsβ

h
3
(β1 + β2λ)sβ

]

(55)

By putting the value of hygrothermal moment from Eq. (52) in Eq. (50), we obtain the hygrothermoelastic
vibration of a cylinder as,

w∗ � B1 sin(qr ) + B2 cos(qr ) + B3 sin(qr ) + B4 cos(qr ) (56)

where

q �
[

Aρc2s2

E I (ηλ − 1)(s − i�)

]1/4
(57)

where the coefficients B1, B2, B3,B4 are constants. Later on, the constants will be determined by using the
boundary conditions at the two ends of the cylindrical beam.

The dispersion relation between � and qn is obtained as

� � q2n

〈
h2

12

{
1 +

�E [1 + g(�)]

1 − ηλ

}〉1/2
(58)

We neglect the corrections of higher-order terms�2
E and retain the first-order term. Additionally, in seeking

an approximate solution, g(�) can be replaced in the square root by g(�0). Now, the dispersion relation given
in Eq. (58) can be written as

� � �0

{
1 +

�E [1 + g(�0)]

2(1 − ηλ)

}
(59)

where �0 is the isothermal frequency value when �E � 0 in Eq. (59), then the equation can be rewritten as,
�0 � q2n

〈
h2/12

〉1/2
, n � 1, 2, ...

The finding, as mentioned earlier, makes it simple to separate the real and imaginary components, get the
eigenfrequencies of the hygrothermoelastic cylinder, and calculate the relevant attenuation coefficients

Re(�) � �0

〈
1 +

�E {1 + Re[g(�0)]}
2(1 − ηλ)

〉
(60)
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Im(�) � �E�0

2(1 − ηλ)
Im[g(�0)] (61)

In other words, we expect to find that, in general, the frequencies are complex, with the real part Re(�)
giving the new eigenfrequencies of the non-simple circular nanobeams in the presence of hygrothermoelastic
coupling and the imaginary part |Im(�)| providing the attenuation of the vibration. The hygrothermoelastic
damping in the case �E << 1 can be expressed in terms of the inverse quality factor given by

Q−1 �
∣
∣∣
∣2
Im(�)

Re(�)

∣
∣∣
∣ � �E

(1 − ηλ)
|Im [g(�0)]| (62)

The definition (62) is analogous to the definition of the Q of an electrical circuit. Here, as in the electrical
analogy, Q is generally a function of frequency. The following relation is used to calculate the frequency shift
caused by hygrothermoelastic damping:

δ �
∣
∣∣
∣
Re(�) − �0

�0

∣
∣∣
∣ �

∣
∣∣
∣
�E {1 + Re[g(�0)}

2(1 − ηλ)

∣
∣∣
∣ (63)

4.2 The classical hygrothermoelastic case when α2 � 0

In this section, we will quickly obtain the formula for the case when both classical Fourier’s and Fick’s laws to
frame a new model of two-temperature hygrothermoelastic diffusion theory within a fractional order system.
Then, based on the governing Eqs. (16) and (17), the expression can be written in dimensionless form as

D1

(
1 +

b

κ

∂

∂t

)
∇2θ � ∂α

∂tα
(θ − ηλψ), 0 < α ≤ 2 (64)

D2∇2ψ � ∂β

∂tβ
(ψ − θ ), 0 < β ≤ 2 (65)

The solution of the uncoupled equation given in Eqs. (64) and (65) is obtained by applying the Laplace
transform defined in Eq. (30) and using Eqs. (33), (34), (36), which is given by,

θ
∗ � 2(sβ − D2k22)

2

(sβ − D2k21)k1k2
[k2 φ1(z) + k1 φ2(z)] (66)

ψ
∗ � 2sβ (sβ − D2k22)

(sβ − D2k21)k1k2

[
k2 (sβ − D2k22)

(sβ − D2k21)
φ1(z) + k1φ2(z)

]

(67)

where

φ1(z) � − sin(k1z)

cos(k1h/2)
+

cos(k1z)

sin(k1h/2)
,

φ2(z) � − cos(k2z)

sin(k2h/2)
+

sin(k2z)

cos(k2h/2)
.

(68)

Substitute values of temperature and moisture from Eqs. (66) and (67) in (51), we get

M
∗
T � T0(sβ − D2k22)

2g(�2)

a h3(sβ − D2k21)(s − i�)
(69)

where

g(�2) �
2∑

i�1

24li
k3i

[
ki h

2
− tan

(
ki h

2

)]
(70)

l1 � β1(s
β − D2k

2
2) + β2λs

β

l2 � (sβ − D2k
2
2)

[

β1 + β2λ
sβ

(sβ − D2k21)

]
(71)
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4.3 The uncoupled case when η � λ � 0

If η � λ � 0, then, the linear relation between the water vapor concentration and the temperature disappears.
In such a situation, the governing Eqs. (16) and (17) in dimensionless form can be written as,

D1

(
1 +

b

κ

∂

∂t

)
∇2θ � ∂α

∂tα

(
θ − z a α2�E

α1T0

∂2w

∂r2

)
, 0 < α ≤ 2, (72)

D2∇2ψ � ∂βψ

∂tβ
, 0 < β ≤ 2, (73)

To solve Eqs. (72) and (73), apply the Laplace transform defined in Eq. (30), and using Eq. (36), and after
simplification, we get the temperature and moisture as

θ
∗ � α2�E

α1T0

[
z − sin(k3z)

k3 cos(ahk3/2)

]
∂2w∗

∂r2
, (74)

ψ
∗ � 0, (75)

in which

k3 � √
κ/D1 s

α/2/
√
sb + κ. (76)

When heat and moisture are considered separately, it is clear that the influence of humidity is nullified. In
other words, the uncoupled hygrothermoelastic model represents the pure thermoelastic model, and humidity
no longer contributes.

With the help of Eqs. (51), (74), and (75), one can obtain the hygrothermal moment

M
∗
T � β1α2�E

aα1(s − i�)
[1 + g(�3)]

∂2w∗

∂r2
(77)

where

g(�3) � 24

(hk3)3

[
hk3
2

− tan

(
hk3
2

)]
. (78)

Using Eqs. (50), (69), and (77), one can obtain hygrothermoelastic vibrationmode, damping, and frequency
shift for the remaining cases in the form of Eqs. (56), (62), and (63), which are omitted for the sake of brevity.

5 Numerical inversion of the Laplace transform

Here, we use the Fourier sum approximation method [37], which combines real and imaginary parts in the
interval (0, 2 T ). In this numerical approach, any function that exists in the Laplace domain (s-domain) can be
converted to a time domain (t-domain) by the following approximation formula:

f (t) � (ect/T )

〈

F(c)/2+
∞∑

k�1

{Re[F(c + kπ i/T )] cos(kπ t/T )

−Im[F(c + kπ i/T )] sin(kπ t/T )}〉
(79)

where s � c ± i� , c can be any real number greater than exponential order A (i.e.
∣∣ f (t)

∣∣ ≤ MeAt ), Re[F(c +
kπ i/T )] �∫ ∞

0 e−ct f (t) cos(kπ t/T )dt , Im[F(c+kπ i/T )] � − ∫ ∞
0 e−ct f (t) sin(kπ t/T )dt , f (t) � f (t)−E ,

and E � ∑
e−2ncT f (2nT + t), , respectively. The convergence rate is well explained in reference [37] by

reducing the truncation error using suitable series transformations like the Euler Transformation and the
Epsilon algorithm.
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Fig. 2 Temperature distribution along t for b � 0.2 at different r � 0.2, 0.5, 0.9

6 Numerical result and discussion

This section presents a numerical calculation of the hygrothermoelastic damping of a beam for a porous
composite material with the following material characteristics [1] given by,

α1 � 31.3 × 10−6cm /(cm
◦
C), α2 � 2.68 × 10−3cm /(cm % H20), η� 0.5 cm3 ◦

C/g,

λ� 0.5 g/(cm3 ◦
C), D � 2.16 × 10−5m2/s, D � 2.16 × 10−6m2/s, ω � 0.0031 g/g

◦
C ,

ρ � 1590 kg/m3, E � 64.3GPa, ν � 0.33

(80)

A beam with an aspect ratio a/h � 10 that experiences a quick pure heat shock (i.e., θ1 � θ2 � 1,
ψ1 � ψ2 � 0) at both ends is used as a representation to demonstrate the transient response of temperature
and moisture distribution. For the nanoscale beam, we will consider the range of beam length a (1 − 100) ×
10−12 m. The original time t will be considered in the picoseconds (1 − 100) × 10−14 sec. The figures were
prepared by using the beam length when a � 1, and z � h/6. From Fig. 2 through 6, we will discuss the
temperature and moisture distribution in dimensionless form over various parameters for the coupled, classical
hygrothermoelastic, and uncoupledmodels. For clear understanding, we draw solid lines for the coupledmodel,
dash lines for the classical model, and dot-dash lines for the uncoupled model; the purple color curve indicates
the curve at the lower value of radius (r � 0.2) or time (t � 0.08), cyan color indicates the curve at mid-value
of radius (r � 0.5) or time (t � 0.2), and red color indicates the curve at the higher value of radius (r � 0.9)
or time (t � 0.8). Figures 2 and 3 show the effect of hygrothermal coupling along dimensionless time t for
various values of fractional order parameters α and β, for a fixed value of temperature discrepancy factor b
has been depicted.

From Figs. 2 and 3, we can easily observe that the temperature distribution θ and moisture distribution ψ
are significantly affected by the different values of fractional order parameter α and β for the coupled model,
classical hygrothermoelastic model, and uncoupled model, respectively. As we increase the dimensionless
time t , the thermodynamic temperature and conductive temperatures increase consistently, while moisture
tends to decrease. It is also observed that ψ always tends to zero when time is sufficiently long, whereas θ
likewise remains unchanged and does not coincide with the applied temperature. The internal heat generation
within the beam is assumed to be constant; then, decreases may be due to the result of energy conversion from
heat energy to strain energy as well as the hygrothermal elastic damping effect. Heat convection and radiation
undoubtedly contribute to heat dissipation in real-world scenarios, but they are not considered in this study.

Figures 4 and 5 show the effect of hygrothermal coupling for the coupled model, classical hygrothermoe-
lastic model, and uncoupled model, respectively, along r with various values of fractional order parameter α,
β and for a fixed value of temperature discrepancy factor b. From Figs. 4 and 5, we can observe that as we
increase the value of the fractional order parameter α and β, the temperature distribution (i.e., thermodynamic
and conductive temperatures) takes higher values. In comparison, moisture takes lower values for the coupled
model, classical hygrothermoelastic model, and uncoupled model, respectively, for r .
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Fig. 3 Moisture distribution along t for b � 0.2 at different r � 0.2, 0.5, 0.9

Fig. 4 Temperature distribution along r for b � 0.2 at different t � 0.08, 0.2, 0.8

Fig. 5 Moisture distribution along r for b � 0.2 at different t � 0.08, 0.2, 0.8
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Fig. 6 Temperature distribution along r and t for various b � 2, 1.7, 0.7

Figure 6 shows the 3D graph of temperature distribution along r and t for various values of the temperature
discrepancy factor b. When the value b � 0 indicates the above model has reduced to one temperature theory,
whereas if b �� 0, it represents two temperature theories. Temperature distribution increases with a rise in
the difference of temperature value factor b. The maximum temperature occurs at the outer edge of the plate
due to the available uniform sectional heat supply. When b � 2 and 0.5< t <1, temperature graph shows
sharp oscillations due to the energy conversion of heat energy to strain energy and also due to the presence
of a hygrothermal damping effect. In is also learned that vapor–liquid interface cannot find a stable state, the
temperature and humidity keep oscillating. At low temperatures load, evaporation only makes a small amount
of vapor, and the liquid–vapor interface moves back and forth. For loads with high temperatures, the amount
of vapor exceeds the system’s handle, so it sometimes rushes out periodically. Thus, the mass flow rate will
lead to oscillations in both of these situations. The obtained outcome is consistent with the findings reported
earlier [38].

Next, only the first-order mode of a doubly clamped beam’s results are calculated. The variation in
hygrothermoelastic damping Q−1/�E and frequency shift δ/�E along thickness h for various values of
r � 0.2, 0.5, 0.9 and fractional order parameter α,β with a fixed value of temperature discrepancy factor
b and aspect ratio a/h � 10 are presented in Figs. 7 and 8 to emphasize the hygrothermoelastic coupling
effects. From Fig. 7, it is clear that there are significant discrepancies in the coupled, classical, and uncoupled
models for various values of α, β and found that they have distinct maximum hygrothermoelastic damping
values for different values of fractional order parameters α, β. The hygrothermoelastic damping Q−1/�E is
sensitive in the range of 10−1 μm to 10 μm. The value of the damping Q−1/�E steadily increases after 0.7
μm, reaches its maximum value at approximately h � 6 μm, and then starts to decrease; for other thicknesses
h, hygrothermoelastic damping Q−1/�E can be ignored. As we increase the value of the fractional order
parameter α and β, we can observe that the value of hygrothermoelastic damping Q−1/�E also increases with
respect to thickness h for the coupled, classical, and uncoupled models.

Figure 8 shows the variations of hygrothermoelastic frequency shift δ/�E in dimensionless form along
thickness h for various values of r � 0.2, 0.5, 0.9, and fractional order parameters α and β with a fixed value
of temperature discrepancy factor b and aspect ratio a/h � 10. From Fig. 8, one can observe that there is no
impact of fractional order parameter α and β on frequency shift till 1 μm of thickness in the coupled model,
classical model, and uncoupled model, while after 1 μm of thickness, there is a significant impact of fractional
order parameter α and β on frequency shift for the coupled, classical, and uncoupled models and also the
frequency shift δ/�E has a clear difference between the coupled, classical, and uncoupled models. Between 6
μm and 14 μm of thickness, we can see the sudden picks in the graph of the coupled, classical, and uncoupled
models for various values of α, β and attain maximum frequency shift pick value for the range of 6 μm to 14
μm at 10 μm of thickness. The hygrothermoelastic frequency shift δ/�E starts to increase again for thickness
beyond 14 μm, and we can observe the maximum variation of hygrothermoelastic frequency shift δ/�E is
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Fig. 7 Damping along thickness for b � 0.2, t � 0.09, a/h � 10 at r � 0.2, 0.5, 0.9

Fig. 8 Frequency shift along thickness for b � 0.2, t � 0.09, a/h � 10 at r � 0.2, 0.5, 0.9

obtained in this case for the coupled, classical, and uncoupled models for various values of fractional order
parameters α, β. It is learned that it is more challenging to determine precise material damping compared
to frequencies. It was discovered that damping ratios marginally increase as temperature and moisture rise.
The change in damping may be masked by the measurement noise since the variation in temperature and
moisture in this location is not considerable and the measurement uncertainty level for damping is very large
[39]. The idea that elastic deformation is affected by moisture absorption but does not cause changes in the
solid’s moisture content may be the cause. It may be expected that the non-Fick effect or the time’s influence
will change the damping and frequency shift when absorbed moisture and elastic deformation are related to
one another. There is minimal evidence of a relationship between damping and frequency shift of the beam
with temperature or moisture. Thus, Figs. 7 and 8 illustrate temperature and moisture have little impact on
damping and frequency shift. It is also observed that if we take various aspect ratios a/h � 10, 15, 20, 25
(or so on to say) and redraw the graph as shown in Figs. 7 and 8, then in each case, the magnitude of curves
with a/h � 15, 20, 25 will always lie below a/h � 10, even though the same has not been illustrated for
the sake of brevity. It is simple to compare the outcomes of the current model to earlier work [29].
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7 Conclusion

In order to investigate the damping and frequency shift of an Euler–Bernoulli nanobeam, the authors of this
study came up with a coupled generalized hygrothermoelastic model that included non-Fourier and non-
Fick effects. An explicit formula was presented, which is used to compute the frequency shift and inverse
quality factor. One can also find the closed-form solutions of hygrothermal fields in the Laplace domain. A
detailed study was conducted for hygrothermoelastic damping for various aspect ratios and end constraints.
We discussed how the aspect ratio and the end limitation affected the damping and frequency shift. Followings
are some of the inferences that can be derived from the numerical results:

Taking into account the presence of moisture results in more damping as a consequence of increased energy
dissipation.

• The frequency shift and damping are affected by the time period it takes for heat flux to relax. The damping
and frequency shift are almost entirely unaffected by the time it takes for moisture flux to relax.

• The damping and frequency shift are notably sensitive to the non-Fourier effect for beams with thicknesses
of 10−1 μm to 10 μm. Still, they are almost disrespectful to the non-Fick effect.

• The influence of the isothermal dimensionless fundamental frequencies on the frequency shift and damping
is explored. Different end constraints or aspect ratios correspond to distinct isothermal frequencies, resulting
in distinct frequency shifts and damping.

• The response history and distribution of the hygrothermal fields are significantly impacted by the linked non-
Fourier and non-Fick effects, which have a non-Fourier effect. Even without heat transfer via convection and
radiation to the surrounding environment, a temperature drop can occur due to hygrothermoelastic damping,
leading to energy loss.
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